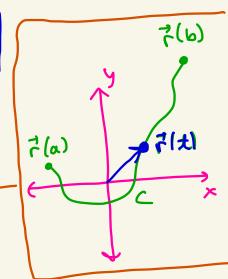
Topic 8 -Line integrals

Part 1: Curves in 2d and 3d

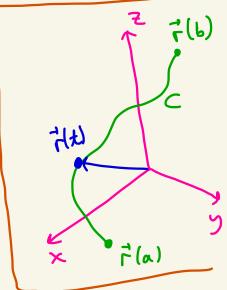
Recall that a vector function $\vec{r}(t) = \langle x(t), y(t) \rangle$



00

$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$$

parameterites a curve C where a \le t \le b.



The line segment C between $P = (x_0, y_0)$ and $Q = (x_1, y_1)$ can be parameterized by

$$x = x_0 + (x_1 - x_0) t$$

$$y = y_0 + (y_1 - y_0)t$$

Corresponding to

$$\vec{r}(t) = \langle x_0 + (x_1 - x_0)t, y_0 + (y_1 - y_0)t \rangle$$

Ex: The line segment C

$$x = 1 + (-1-1)t = 1-2t$$

$$y = 1 + (3-1)t = 1+2t$$

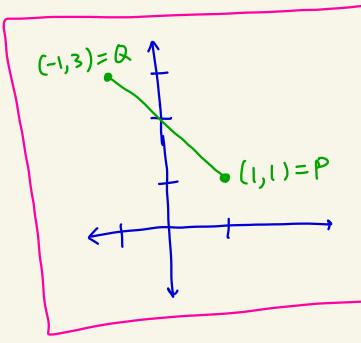
05 t 51.

This corresponds to

$$7(t) = <1-2t, 1+2t$$

for $0 \le t \le 1$.

between (1,1) and

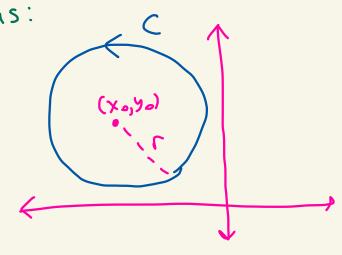


Calc II formula

The circle, oriented counterclackwise, with radius r centered at (xo, yo)

$$\chi = \chi_o + r\cos(t)$$

$$y = y_0 + c sin(t)$$

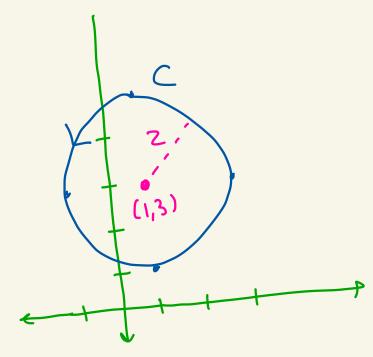


Ex: The circle C with radius 2 centered at (1,3) oriented Counterclockwise is parameterized by

$$X = 1 + 2 \cos(t)$$

$$y = 3 + 2 \sin(t)$$

$$0 \le t \le 2\pi$$



Calc II

Recall that a curve C given by
$$\vec{r}(t)$$
 on a $\leq t \leq b$ is called smooth if $\vec{r}(t)$ on a $\leq t \leq b$ is called smooth if $\vec{r}'(t)$ exists for a $\leq t \leq b \leftarrow \begin{cases} no & abrupt \\ edges \end{cases}$

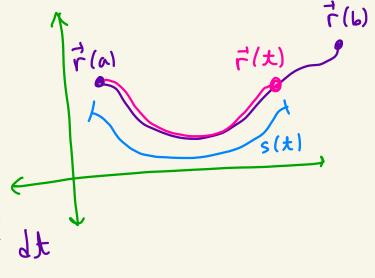
(2) $\vec{r}'(t) \neq \vec{0}$ for a $\leq t \leq b \leftarrow \begin{cases} no & stops \ on \\ curve \end{cases}$

If C is a smooth curve described by $\vec{r}(t) = \langle x(t), y(t) \rangle$ for $a \le t \le b$, then the arclength along C from F(a) to F(t) is

$$S(t) = \int_{\alpha}^{t} |\vec{r}'(u)| du$$

$$S \text{ is Vsed}$$
for arclength

$$= \int_{\alpha}^{t} \sqrt{(x'/t)^{2} + (y'/t)^{2}} dt$$

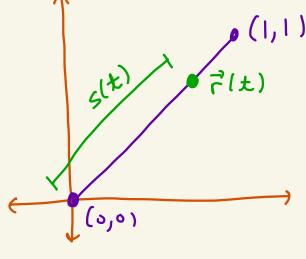


We have the parameterization

$$\overrightarrow{r}(t) = \langle t, t \rangle$$

$$y = 0 + (1-0)t$$

$$x = 0 + (1-0)t$$



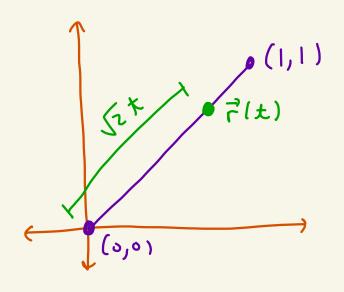
Then,

The arc length from (0,0) to 7(t) is

$$S(t) = \int_{0}^{t} |\vec{r}'(u)| du$$

$$= \int_{0}^{t} \sqrt{1^{2} + 1^{2}} du$$

$$\vec{r}'(t) = \langle 1, 1 \rangle$$
 $|\vec{r}'(t)| = \sqrt{1^2 + 1^2}$
 $= \sqrt{2} \text{ w/o}$



We can re-parameterize the curve C in terms of arc length as follows:

$$\vec{\Gamma}(t) = \langle t, t \rangle$$
 $0 \leq t \leq 1$
 $S = \sqrt{2}t$

Solve for
$$t$$
 to get
$$t = \frac{s}{\sqrt{2}}$$

Plug into 7 to get

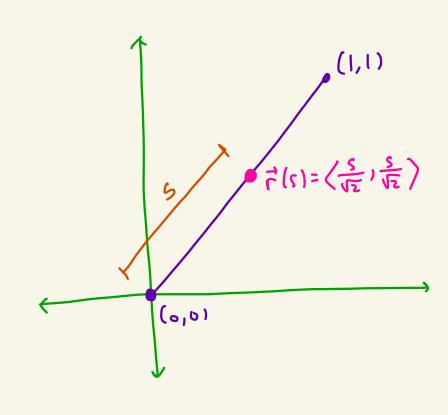
where

Plug
$$t=0$$

into $s=5it$

to yet

 $s=0$
 $s=5i$
 $s=5i$



SKIP THIS PAGE IN CLASS

The line segment C between P=(xo,yo)

and Q=(x1,y1) with length IPal

can be parameterized in terms of arc

length as follows:

$$\Gamma(s) = \left\langle x_0 + \frac{1}{|\vec{PQ}|} (x_1 - x_0) s, y_0 = \frac{1}{|\vec{PQ}|} (y_1 - y_0) s \right\rangle$$

$$T |s_0|$$

where 0555 [Pal.

That is, $X = X_0 + \frac{1}{|\vec{PQ}|} (X_1 - X_0) \leq$

$$y = y_0 + \frac{1}{|PQ|} (y_1 - y_0) s$$

DESEIPAL. Where

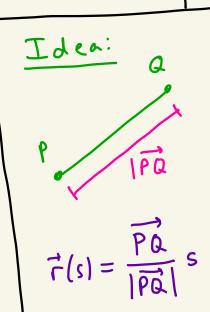
Ex:
$$P = (1,0), Q = (1,2)$$

 $|PQ| = |\langle 1-1, 0-2 \rangle| = |\langle 0,-2 \rangle| = |Q^2 + (-2)^2 = 2$
C is parameterized by

$$x = 1 + \frac{1}{2}(1-1)s = 1$$

$$y = 0 + \frac{1}{2}(2-0)s = s$$

06862



Part 2: Line integrals

Let C be a smooth curve parameterized in terms of parameterized in terms of arc length as $\vec{r}(s) = \langle x(s), y(s) \rangle$ for $a \leq s \leq b$.

we start
with a
2d-curve.
Later we do
a 3d-curve

Consider a function f(x,y). When $f(x,y) \ge 0$ we want an integral that finds the area of the "fence the area of the "fence above C and under z=f(x,y).

z=f(x,y)efence z=f(x,y)

Subdivide C into n sub-arcs by subdividing the interval [a,b] as

$$\alpha=2^{o}<2^{i}<\cdots<2^{\nu-i}<2^{\nu}=p$$

corresponding to n points $P_0, P_1, P_2, ..., P_n$ along C Where $P_i = (x(s_i), y(s_i))$ Pick n points

Pi, P2, ..., Pn

where Pi lies on the

sub-arc between

Pin and Pi.

Let ΔS_i represent the arclenth of the ith subarc.

On the i-th
sub-arc the product $f(P_i^*) \cdot \triangle S_i$

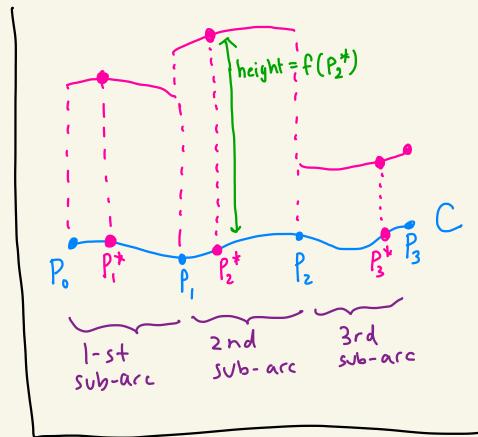
represents the "area"

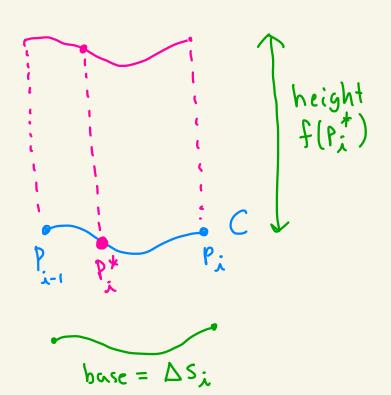
of the approximation

to the area of the

fence on the ith sub-arc

So the area of the "fence" is approximated by





Let Δ be the maximum value of the lengths Ds,, Ds2, ..., Dsn of the subarcs. The line integral of f over C is denfined to be $\int_{C} f(x,y)ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(P_{i}^{*}) \Delta s_{i}$

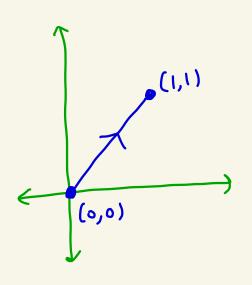
if this limit exists.

To evaluate the above integral we calculate:

 $\int f(x,y)ds = \int f(x(s),y(s))ds$ plug in the parameterization of C in terms of x(s), y(s) and integrate with respect to s

Ex: Calculate
$$\int_{C} (x+y) ds$$

Where C is the line segment from (0,0) to (1,1).



Previously we saw that C is described by
$$x(s) = \frac{s}{\sqrt{z}} \qquad y(s) = \frac{s}{\sqrt{z}}$$

Where 0 \le S \le \sqrt{z}.

$$\int_{C}^{\infty} (x+y) ds = \int_{C}^{\infty} (\frac{s}{\sqrt{2}} + \frac{s}{\sqrt{2}}) ds = \frac{2}{\sqrt{2}} \int_{C}^{\infty} s ds$$

$$= \frac{2}{\sqrt{2}} (\frac{s^{2}}{\sqrt{2}}) \int_{0}^{\sqrt{2}} = \frac{2}{\sqrt{2}} (\frac{\sqrt{2}}{2})^{2} - \frac{0^{2}}{2} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

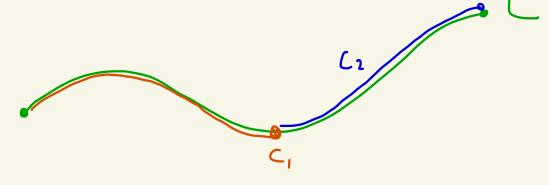
$$= \frac{2}{\sqrt{2}} (\frac{s^{2}}{\sqrt{2}}) \int_{0}^{\sqrt{2}} = \frac{2}{\sqrt{2}} (\frac{\sqrt{2}}{2})^{2} - \frac{0^{2}}{2} = \sqrt{2}$$

We get some usual properties:

$$\int_{C} \left[f(x,y) + g(x,y)\right] ds = \int_{C} f(x,y) ds + \int_{C} g(x,y) ds$$

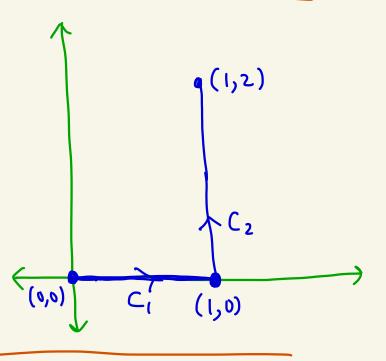
$$\int_{C} x f(x,y) ds = x \left[\int_{C} f(x,y) ds \right]$$

$$\int_{C} f(x,y)ds = \int_{C}^{C} f(x,y)ds + \int_{C}^{C} f(x,y)ds$$



SKIP THIS EXAMPLE IN CLASS

Where C is broken into C, and C2 as shown.



We have:

have:

$$\int_{C_{1}} (x+y) ds = \int_{0}^{1} (s+0) ds = \frac{s^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

$$x = s$$

$$y = 0$$

$$0 \le s \le 1$$

$$\int_{0 \le 5 \le 1}^{9 = 0} (x+y) ds = \int_{0}^{2} (1+s) ds = s + \frac{s^{2}}{2} \Big|_{0}^{2} = (2+\frac{2^{2}}{2}) - (0) = 4$$

$$\int_{0}^{2} (x+y) ds = \int_{0}^{2} (1+s) ds = s + \frac{s^{2}}{2} \Big|_{0}^{2} = (2+\frac{2^{2}}{2}) - (0) = 4$$

$$S_{0}$$
 $\int_{C} (x+y) ds = \frac{1}{2} + 4 = 4.5$

Suppose We want to parameterize C by $\vec{r}(t) = \langle x(t), y(t) \rangle$ where asksb and t is not are-length. S(t) Then, (from Calc II), the arclength on C from r(a) to r(t) is $S(t) = \int_{0}^{t} |\vec{r}'(u)| du$ and s'(t) = |r'(t)|Son ds = s'(t) dt $= | \Gamma'(t) | dt$ $= \left| \langle x(t), y'(t) \rangle \right| dt$ = $\sqrt{(x'(t))^2 + (y'(t))^2} dt$

で(6)

で(大)

$$\int_{C} f(x,y) ds = \int_{a}^{b} f(x(t),y(t)) \cdot |\vec{r}'(t)| dt$$

$$= \int_{a}^{b} f(x(t),y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

C is given by

$$x = 1 + (-1 - 1)t = 1 - 2t$$

 $y = 1 + (3 - 1)t = 1 + 2t$
 $0 \le t \le 1$

$$x' = -2$$

 $y' = 2$
 $ds = \sqrt{(x')^2 + (y')^2} dt = \sqrt{(-2)^2 + (2)^2} dt = \sqrt{8} dt$

So,

$$\int_{0}^{1} (2x-y) ds = \int_{0}^{1} (2(1-2t)-(1+2t)) \sqrt{8} dt$$

$$= \int_{8}^{1} \sqrt{8} \left[1 - 2t \right] dt = \sqrt{8} \left[t - t^{2} \right]_{0}^{1}$$

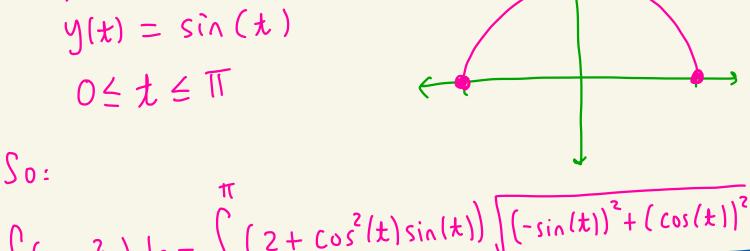
$$= \sqrt{8} \left[\left(1 - 1^{2} \right) - \left(0 - 0^{2} \right) \right] = 0$$

C is the upper half of the unit circle, oriented counter-clockwise.

We have:

$$X(t) = \cos(t)$$

$$y(t) = sin(t)$$



$$\int_{0}^{\pi} (2+x^{2}y) ds = \int_{0}^{\pi} \frac{(2+\cos^{2}(t)\sin(t)) \int_{0}^{\pi} (-\sin(t))^{2} + (\cos(t))^{2}}{2+x^{2}y} ds$$

$$= \int_{0}^{\pi} (2 + \cos^{2}(t) \sin(t) dt)$$

$$= \int_{0}^{\pi} 2dt + \int_{0}^{\pi} \cos^{2}(t) \sinh(t) dt$$

$$= 3\pi - \int_{-1}^{1} u^{2} du = 2\pi - \left(\frac{3}{3}\right)_{-1}^{1}$$

$$U = Cos(t)$$

$$du = -sin(t)dt$$

$$-du = sin(t)dt$$

$$t = 0 \longrightarrow u = 1$$

 $1 - = \lambda \leftarrow \pi = \pm$

$$= 2\pi - \left(\frac{[-1)^3}{3} - \frac{1}{3}\right)$$
$$= 2\pi + \frac{2}{3}$$

Note: Suppose C is a smooth 3-dimensional.

Curve given by $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ Then all the same ideas apply and $\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t),y(t),z(t)) \cdot |\vec{r}'(t)| dt$ $= \int_{c}^{b} f(x(t),y(t),z(t)) \int [x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2} dt$

Recall: The line segment from $P = (x_0, y_0, Z_0)$ to $Q = (x_1, y_1, Z_1)$ is given by $x = x_0 + (x_1 - x_0) t$ $y = y_0 + (y_1 - y_0) t$ $z = Z_0 + (Z_1 - Z_0) t$

0 5 251

EX: Evaluate $\int_{C} (xy+2z)ds$ where C is the line segment from P=(1,0,0) to Q=(0,1,1).

C is given by X = 1 + (0 - 1) t = 1 - t Y = 0 + (1 - 0) t = t Z = 0 + (1 - 0) t = t $0 \le t \le 1$

So, $\int_{C} (xy+2z) ds = \int_{0}^{1} (1-t)t+2t \int_{0}^{2} (-1)^{2} + (1)^{2} + (1)^{2} dt$ x = 1-t, x' = -1 y = t, y' = 1 z = t, z' = 1 z = t, z' = 1 $z = \sqrt{3} \left[-t^{2} + 3t \right] dt = \sqrt{3} \left[-\frac{t^{3}}{3} + 3\frac{t^{2}}{2} \right]_{0}^{1}$ $= \sqrt{3} \left[-\frac{1}{3} + \frac{3}{2} \right] = \left[\frac{3}{6} \sqrt{3} \right]_{0}^{1}$